
1

Restrições - Métodos de Resolução

• Resolução Simbólica /Algébrica

– Domínios Herbrand – Unificação

– Boleanos – Unificação Boleana

– Programação Linear Inteira (Simplex)

• Retrocesso

– Percorre todo o espaço de pesquisa

• Complexidade kn

– Redução do espaço de pesquisa

• Propagação de restrições

• Cortes - Programação inteira

• Complexidade kr
n (kr < k)

• Pesquisa Local

– Reparação de “soluções”

– Optimização

– Método incompleto

– Metaheurísticas – óptimos locais

• Métodos Mistos

2

Heuristic Search

• Algorithms that maintain some form of consistency, remove (many?)

redundant values but, not being complete, do not eliminate the need

for search.

• Even when a constraint network is consistent, enumeration is subject

to failure.

• In fact, a consistent constraint network may not even be satisfiable.

• All that is guaranteed by maintaining some type of consistency is that

the networks are equivalent.

• Solutions are not “lost” in the reduced network, that despite having

less redundant values, has all the solutions of the former.

3

Heuristic Search

• Hence, the domain pruning does not eliminate in general the need for

search. The search space is usually organised as a tree, and the

search becomes some form of tree search.

• As usual, the various branches down from one node of the search

tree correspond to the assignment of the different values in the

domain of a variable.

• As such, a tree leaf corresponds to a complete compound label

(including all the problem variables).

• A depth first search in the tree, resorting to backtracking when a

node corresponds to a dead end (unsatisfiability), corresponds to an

incremental completion of partial solutions until a complete one is

found.

4

Heuristic Search

• Given the execution model of constraint logic programming (or any

algorithm that interleaves search with constraint propagation)

 Problem(Vars):-

 Declaration of Variables and Domains,

 Specification of Constraints,

 Labelling of the Variables.

 the enumeration of the variables determines the shape of the search

tree, since the nodes that are reached depend on the order in which

variables are enumerated.

• Take for example two distinct enumerations of variables whose

domains have different cardinality, e.g. X in 1..2, Y in 1..3

and Z in 1..4.

5

Heuristic Search

enum([X,Y,Z]):-

 indomain(X)

 propagation

 indomain(Y),

 propagation,

 indomain(Z).

of nodes = 32

(2 + 6 + 24)

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3

1

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3

2

(X in 1..2, Y in 1..3, Z in 1..4)

6

Heuristic Search

enum([X,Y,Z]):-

 indomain(Z),

 propagation

 indomain(Y),

 propagation,

 indomain(X).

of nodes = 40

(4 + 12 + 24)

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

2 3 1 2 3 1 2 3 1 2 3 1

1 2 3 4

(X in 1..2, Y in 1..3, Z in 1..4)

7

Heuristic Search

• The order in which variables are enumerated may have an important

impact on the efficiency of the tree search, since

– The number of internal nodes is different, despite the same

number of leaves, or potential solutions, P #Di.

– Failures can be detected differently, favouring some orderings of

the enumeration.

– Depending on the propagation used, different orderings may lead

to different prunings of the tree.

• The ordering of the domains has no direct influence on the search

space, although it may have great importance in finding the first

solution.

8

Heuristic Search

• To control the efficiency of tree search one should in principle adopt

appropriate heuristics to select

• The next variable to label

• The value to assign to the selected variable

• Since heuristics for value choice will not affect the size of the search

tree to be explored, particular attention will be paid to the heuristics

for variable selection.

9

Variable Selection Heuristics

• There are two types of heuristics that can be considered for

variable selection.

– Static - the ordering of the variables is set up before

starting the enumeration, not taking into account the

possible effects of propagation.

– Dynamic - the selection of the variable is determined after

analysis of the problem that resulted from previous

enumerations (and propagation).

10

Static Heuristics

• Static heuristics are based on some properties of the underlying

constraint graphs.

• A typical example is the Maximum Degree Ordering heuristics:

MDO Heuristics (Maximum Degree Ordering):

 With a Maximum Degree Ordering heuristics, the variables of a

constraint problem are enumerated by decreasing order of their

degree in the constraint graph.

• Example:

 Heuristics MDO would use an ordering

starting in nodes 4 (d=6) and 1 (d=5) and

ending in node 7 (d=3). Nodes 2, 3, 5 and 6

would be sorted arbitrarily.

2 3

5 6

1

7

4

11

Dynamic Heuristics

• In contrast to static heuristics, variable selection may be determined

dynamically. Instead of being fixed before enumeration starts, the

variable is selected taking into account the propagation of previous

variable selections (and labellings).

• In addition to problem specific heuristics, there is a general principle

that has shown great potential, the first-fail principle.

• The principle is simple: when a problem includes many

interdependent “tasks”, start solving those that are most difficult. It is

not worth wasting time with the easiest ones, since they may turn to

be incompatible with the results of the difficult ones.

12

First-Fail Heuristics

• There are many ways of interpreting and implementing this generic

first-fail principle.

• Firstly, the tasks to perform to solve a constraint satisfaction problem

may be considered the assignment of values to the problem

variables. How to measure their difficulty?

• Enumerating by itself is easy (a simple assignment). What turns the

tasks difficult is to assess whether the choice is viable, after

constraint propagation. This assessment is hard to make in general,

so we may consider features that are easy to measure, such as

– The domain of the variables

– The number of constraints (degree) they participate in.

13

First-Fail Heuristics

The domain of the variables

• Intuitively, if variables X1 / X2 have m1 / m2 values in their domains,

and m2 > m1, it is preferable to assign values to X1, because there is

less choice available !

• In the limit, if variable X1 has only one value in its domain, (m1 = 1),

there is no possible choice and the best thing to do is to immediately

assign the value to the variable.

• Another way of seeing the issue is the following:

– On the one hand, the “chance” to assign a good value to X1 is

higher than that for X2.

– On the other hand, if that value proves to be a bad one, a

larger proportion of the search space is eliminated.

14

First-Fail Heuristics: Example

Example:

 In the 8 queens problem,

where queens Q1, Q2 e Q3,

were already enumerated, we

have the following domains for

the other queens

• Q4 in {2,7,8}, Q5 in {2,4,8}, Q6 in {4}, Q7 in {2,4,8}, Q8 in {2,4,6,7}.

• Hence, the best variable to enumerate next should be Q6, not Q4 that

would follow in the “natural” order.

• In this extreme case of singleton domains, node-consistency achieves

pruning similar to arc-consistency with less computational costs!

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

15

First-Fail Heuristics

The number of constraints (degree) of the variables

• This heuristics is basically the Maximum Degree Ordering (MDO)

heuristics, but now the degree of the variables is assessed

dynamically, after each variable enumeration.

• Clearly, the more constraints a variable is involved in, the more

difficult it is to assign a good value to it, since it has to satisfy a larger

number of constraints.

• Of course, and like in the case of the domain size, this decision is

purely heuristic. The effect of the constraints depends greatly on

their propagation, which depends in turn on the problem in hand,

which is hard to antecipate.

16

Problem Dependent Heuristics

• In certain types of problems, there might be heuristics specially

adapted for the problems being solved.

• For example, in scheduling problems, where „tasks‟ should not

overlap but have to take place in a certain period of time, it is usually

a good heuristic to “scatter” them as much as possible within the

allowed period.

• This suggests that one should start by enumerating first the variables

corresponding to tasks that may be performed in the beginning and

in the end of the allowed period, thus allowing “space” for the others

to execute.

• In such case, the dynamic choice of the variable would take into

account the values in its domain, namely the minimum and maximum

values.

17

Value Choice Heuristics

• Once a variable to label is selected, a value within its domain has to

be chosen.

• There are not many generic methods to handle value choice. The

only one widely used is the principle of choosing the value with

higher “likelihood” of success!

• The reason for this is obvious. In contrast with variable selection,

value choice will not determine the size of the search space, so one

should be interested in finding as quickly as possible the path to a

solution.

• Of course, the application of this principle is highly dependent on the

problem (or even the instance of the problem) being solved.

18

Value Choice Heuristics

• Some forms of assigning likelihood are the following:

Ad hoc choice:

 Again in scheduling problems, once the variable with lowest/highest

value in its domain is selected, the natural choice for the value will be

the lowest/highest, which somehow “optimises” the likelihood of

success.

Lookahed:

 One may try to anticipate, for each of the possible values, the

likelihood of success by evaluating (after its propagation) the effect

on an aggregated indicator on the size of the domains not yet

assigned, choosing the one that maximises such indicator.

19

Value Choice Heuristics

Optimisation:

 In optimisation problems, where there is some function to

maximise/minimise, one may get bounds for that function

when the alternative values are chosen for the variable, or

check how they change with the selected value.

• Of course, the heuristic will choose the value that either

optimises the bounds in consideration, or that improves them

the most.

• Notice that in this case, the computation of the bounds may

be performed either before propagation takes place (less

computation, but also less information) or after such

propagation.

20

Heuristics in SICStus

• A program based on the Constraint Logic Programming paradigm

has the structure already described:

 Problem(Variables):-

 Declaration of Variables and Domains,

 Specification of Constraints,

 Labelling of the Variables.

• In the labelling of the variables X1, X2, ..., Xn, of some list Lx, one

should specify the intended heuristics.

• Although these heuristics may be programmed explicitly, there are

some facilities that SICStus provides, both for variable selection and

value choice.

21

Heuristics in SICStus

• The simplest form to specify enumeration is through a buit-in

predicate, labeling/2, where

– the 1st argument is a list of options, possibly empty

– the 2nd argument is a list Lx = [X1, X2, ..., Xn] of variables to

enumerate

• By default, labeling([], Lx) selects variables X1, X2, ..., Xn, from list

Lx, according to their position, “from left to right”. The value chosen

for the variable is the least value in the domain.

• This predicate can be used with no options for static heuristics,

provided that the variables are sorted in the list Lx according to the

intended ordering.

22

Heuristics in SICStus

• With an empty list of options, predicate labeling([],L) is in fact

equivalent to predicate enumerating(L) below

 enumerating([]).

 enumerating([Xi|T]):-

 indomain(Xi),

 enumerating(T).

 where the built-in predicate, indomain(Xi), chooses values for

variable Xi in increasing order.

• There are other possibilities for user control of value choice. The

current domain of a variable, may be obtained with built-in clpfd

predicate fd_dom/2. For example

 ?- X in 1..5, X #\=3, fd_dom(X,D).

 D = (1..2)\/(4..5),

 X in(1..2)\/(4..5) ?

23

Heuristics in SICStus

• Usually, it is not necessary to reach this low level of programming,

and a number of predefined options for predicate labeling/2 can be

used.

• The options of interest for value choice for the selected variable are

up and down, with the obvious meaning of chosing the values from

the domain in increasing and decreasing order, respectively.

• Hence, to guarantee that the value of some variable is chosen in

decreasing order without resorting to lower-level clpfd predicates, it

is sufficient to call predicate labeling/2 with option down

labeling([down],[Xi])

24

Heuristics in SICStus

The options of interest for variable selection are leftmost, min, max, ff,

ffc and variable(Sel)

– leftmost - is the default mode.

• Variables are simply selected by their order in the list.

– min, max - the variable with the lowest/highest value in its domain

is selected.

• Useful, for example, in many applications of scheduling, as

discussed.

– ff, ffc - implements the first-fail heuristics, selecting the variable with

a domain of smallest size, breaking ties with the number of

constraints, in which the variable is involved.

25

Heuristics in SICStus

– variable(Sel)

• This is the most general possibility. Sel must be defined in the

program as a predicate, whose last 3 parameters are Vars,

Selected, Rest. Given the list of Vars to enumerate, the

predicate should return Selected as the variable to select, Rest

being the list with the remaining variables.

• Other parameters may be used before the last 3. For example, if

option variable(includes(5)) is used, then some predicate

includes/4 must be specified, such as

includes(V, Vars, Selected, Rest)

 which should choose, from the Vars list, a variable, Selected,

that includes V in its domain.

26

Heuristics in SICStus

• Notice that all these options of predicate labeling/2 may be

programmed at a lower level, using the adequate primitives available

from SICStus for inspection of the domains. These Reflexive

Predicates, named fd_predicates include

 fd_min(?X, ?Min)

 fd_max(?X, ?Max)

 fd_size(?X, ?Size)

 fd_degree(?X, ?Degree)

 with the obvious meaning. For example,

 ?- X in 3..8, Y in 1..5, X #< Y,

 fd_size(X,S), fd_max(X,M), fd_degree(Y,D).

 D = 1, M = 4, S = 2,

 X in 3..4, Y in 4..5 ?

27

Search

• Constraint Logic Programming uses, by default, depth first search with

backtracking in the labelling phase.

• Despite being “interleaved” with constraint propagation, and the use of

heuristics, the efficiency of search depends critically of the first choices

done, namely the values assigned to the first variables selected.

• Backtracking “chronologically”, these values may only change when

the values of the remaining k variables are fully considered (after some

O(2k) time in the worst case). Hence, alternatives have been proposed

to pure depth first search with chronological backtracking, namely

• Intelligent backtracking,

• Iterative broadening,

• Limited discrepancy; and

• Incremental time-bounded search.

28

Search

• In chronological backtracking, when the enumeration of a variable fails,

backtracking is performed on the variable that immediately preceded it,

even if this variable is not to blame for the failure.

• Various techniques for intelligent backtracking, or dependency directed

search, aim at identifying the causes of the failure and backtrack

directly to the first variable that participates in the failure.

• Some variants of intelligent backtracking are:

• Backjumping ;

• Backchecking ; and

• Backmarking .

29

Intelligent Backtracking Example

Backjumping

• Failing the labeling of a

variable, all variables that

cause the failure of each of

the values are analysed, and

the “highest” of the “least”

variables is backtracked

 In the example, variable Q6, could not be labeled, and backtracking is

performed on Q4, the “highest of the least“ variables involved in the

failure of Q6.

 All other positions of Q6 are, in fact, incompatible with the value of

some variable lower than Q4.

1 3 4 2 5 4 5 3 5 1 2 3

30

Intelligent Backtracking

Backchecking and Backmarking

• These techniques may be useful when the testing of constraints on

different variables is very costly. The key idea is to memorise previous

conflicts, in order to avoid repeating them.

– In backchecking, only the assignments that caused conflicts are

memorised.

– In backmarking, the assignments that did not cause conflicts are

also memorised.

• The use of these techniques with constraint propagation is usually not

very effective (with a possible exception of SAT solvers, with nogood

clause learning), since propagation anticipates the conflicts, somehow

avoiding irrelevant backtracking.

31

Iterative Broadening

• In iterative broadening it is assigned a limit b, to the number of times

that a node is visited (both the initial visit and those by backtracking),

i.e. the number of values that may be chosen for a variable. If this

value is exceeded, the node and its successors are not explored any

further.

• In the example, assuming

that b=2, the search space

prunned is shadowed.

• Of course, if the search fails for a given b, this value is iteratively

increased, hence the iterative broadening qualification.

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3

1

32

Limited Discrepancy

• Limited discrepancy assumes that the value choice heuristic may only

fail a (small) number of times. It directs the search for the regions

where solutions more likely lie, by limiting to some number d the

number of times that the suggestion made by the heuristic is not taken

further.

• In the example, assuming

heuristic options at the left

and d=3 the search space

prunned is shadowed.

• Again, if the search fails, d may be incremented and the search space

is increasingly incremented.

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3

1

d = 3
d = 2

33

Incremental Time Bounded Search

• In ITBS, the goal is similar to iterative broadening or limited

discrepancy, but implemented differently. For each choice made (e.g.

variable to label and/or value assigned), search is allowed for a given

time T.

• If no solution is found, another choice is tested. Of course, if the search

fails for a certain value of T, this may be increased incrementally in the

next iterations, guaranteeing that the search space is also increasing

iteratively.

• In all these algorithms (iterative broadening, limited discrepancy and

incremental duration) parts of the search space may be revisited.

Nevertheless, the worst-case time complexity of the algorithms is not

worsened.

34

Incremental Time Bounded Search

• For example, in the case of incremental time-bounded search if the

successive and failed iterations increase the time limit by some factor

a  2, i.e. Tj+1 = aTj, the iterations will last

 T0 + T1 + ... + Tj

 = T (1+ a + a2 + ...+ aj) < T aj+1

• If a solution is found in iteration j, then

– the time spent in the previous iterations is Taj-1.

– iteration j may last for Taj. In average, the solution is found in half

this time.

• Hence, the “wasted” time is of the same magnitude of the “useful” time

spent in the search (in iteration j+1).

35

Pesquisa Local

• Reparação de “soluções”

– A partir duma etiqueta (conjunto de atribuições de valores a

variáveis) completa (ou mesmo parcial), que viola algumas

restrições, tentar repará-la por sucessivas alterações de algumas

variáveis.

– Noção de “vizinhança”

– Ao contrário do retrocesso, não há “variável mais recente”. Todas

são, à partida, candidatas a serem alteradas no próximo passo.

– Método, em geral, não é completo. Está confinado a uma “zona”

do espaço de pesquisa.

36

Pesquisa Local - Reparação

4

7

1

6

3

5

8

2

Solução

Permutação

Vizinhança

Troca

37

Pesquisa Local - Reparação

2 Ataques

3 - 5

4 - 8

4

7

1

6

3

5

8

2

38

Pesquisa Local - Reparação

4

7

1  2

6

3

5

8

2  1

2 Ataques

3 - 5

4 - 8

39

Pesquisa Local - Reparação

4

7

2

6

3

5

8

1

3 Ataques

1 - 3

2 - 8

3 - 6

40

Pesquisa Local - Reparação

4  1

7

2

6

3

5

8

1  4

3 Ataques

1 - 3

2 - 8

3 - 6

41

Pesquisa Local - Reparação

1 Ataque

3 - 6

1

7

2

6

3

5

8

4

42

Pesquisa Local - Reparação

1

7

2  8

6

3

5

8  2

4

1 Ataque

3 - 6

43

Pesquisa Local - Reparação

1

7

8

6

3

5

2

4

3 Ataques

2 - 3

2 - 7

3 - 6

44

Pesquisa Local - Reparação

1

7  5

8

6

3

5  7

2

4

3 Ataques

2 - 3

2 - 7

3 - 6

45

Pesquisa Local – Reparação

0 Ataques

1

5

8

6

3

7

2

4

46

Repairing Methods

• Difficulty - Escaping from Local Optima

• Restarts / Stochastic methods

 2 3 1 3 0

